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Proving Predeterminism,  
or Why Actuality Is Certainly Actual 

Ward Blondé 

 

Abstract: I define predeterminism as the claim that what is actual is actual with 
certainty, and provide a proof of it in this paper. Predeterminism solves a major 
problem: modal realism’s probability distributions for selecting the actual world 
from all the possible worlds, are either arbitrary, because they are not unique, or 
they do not sum up to one. This problem is solved by replacing modal realism 
with a set-theoretic plenitude subjected to cosmological natural selection. 
Essentially, because worlds reproduce with unequal success, and because there 
are so many of them in the plenitude, worlds outnumber and outweigh each 
other with infinite factors. An infinitely growing sequence of worlds, or a world 
life, comes out as the unique champion in this evolutionary competition and is 
certainly actual. The proof uses the ideas that the probability to be actual for a 
world is proportional to its size, age, and abundance, and that all the possible 
worlds are set-theoretically well-ordered by cosmological natural selection.  

Keywords: set theory, self-locating belief, cosmological natural selection, 
determinism, necessitarianism, absolute infinite.  

 

1. Introduction 

Predeterminism is a term that is normally used in religious circles (Newsom 
2018). In this paper, it is used to denote the following metaphysical thesis that is 
proven: actuality is certainly actual. This means that the contingent actuality is 
uniquely preordained to be the case down to the smallest detail, with 100% 
certainty. Necessity implies certainty, but not the other way around: a random real 
number is certainly a non-natural number, but not necessarily a non-natural 
number. Likewise, non-actual/actual things are certainly non-actual/actual 
according to predeterminism, although they remain possible/contingent with 
respect to modal realism.  

Predeterminism follows from a more familiar metaphysical thesis, namely 
necessitarianism (Mandelkern and Rothschild 2021). The latter is the claim that 
everything that exists possibly also exists necessarily in actuality (also known as 
modal collapse, or: ◇x→□x, where ◇ means possibility, □ necessity, and x any 
world part). Predeterminism and necessitarianism belong to a family of principles 
that stipulate that some events could not have been any other way. The other 
members of this family are the principle of sufficient reason (Pruss 2006), fatalism 
(Bernstein 1992), hard determinism (Pereboom 1995), and soft determinism 
(Repetti 2010). All these principles, except soft determinism, are often thought to 
be incompatible with libertarian free will (Palmer 2014). 
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Necessitarianism is a well-investigated, but unpopular position. Lewis 
(1986, 112) stated that modal realism is kaput if all the possible worlds are just 
parts of actuality. More recently, Mandelkern and Rothschild (2021, 89) could not 
believe their own technical proof that necessitarianism is true, calling it a puzzle 
which they leave open. It is my aim in this paper to prove1 predeterminism, a 
consequence of necessitarianism, and to provide insight in how it can be the case. 
The metaphysics behind predeterminism requires what can be known a priori 
from several domains: pure set theory with classes (Fraenkel et al. 1973), self-
locating belief (Bostrom 2013), and cosmological natural selection (Smolin 1992). 
The terminology of modal realism (Lewis 1986) is necessary, although not 
sufficient, to provide set theory with a metaphysical interpretation. Some extra 
terminology is introduced to sustain this interpretation. 

After a section with background knowledge and assumptions, the proof of 
predeterminism follows. Then come a discussion and conclusions. 

2. Background Knowledge and Assumptions 

2.1 Modal realism 

According to modal realism, all the possible worlds exist. They are causally and 
spatiotemporally isolated (henceforth isolated), and the union of all the worlds is 
all of reality and is called the plenitude2 (PL). Something exists possibly if it exists 
in some possible worlds and necessarily if it exists in every possible world. 
Something is contingent if it is possible, but not necessary.  

Two worlds or world parts3 are duplicates if and only if (henceforth iff) all 
their intrinsic properties are the same. Every world is a spacetime and I will define 
spacetime in Section 2.2 such that also the plenitude is a spacetime (although not 
a world). Let x, y, and z be symbols reserved for worlds or spacetimes. Then the 
abundance of x in y is the number of duplicates x has in y. 

The actual world is our world. This means that the actuality of a world is 
indexical, just like ‘here’ and ‘now.’ According to modal realism, the actual world 
is non-plenitudinous with certainty.4 This interpretation of modal realism has a 
major problem: any distribution of uncertain probabilities (different from zero 
and one) for selecting the actual world from all the possible worlds (Nilsson 1986, 
72), is arbitrary and/or does not sum up to one.  

These uncertain-valued probability distributions typically become smaller 
at an exponential rate, because they have to sum up to one. Consider, for example, 
the exponential distribution in which world n gets probability 1/2n, with n any 

 
1 Blondé’s (2015, 148-150) paper paved the way for this proof, however, with serious flaws. For 
example, even though it uses set theory, it does not use the notion of well-orderedness. 
2 Lewis also often uses the term ‘logical space.’ 
3 In this paper, a world x is part of a world y iff x has a duplicate that is part of y. I will, therefore, 
speak of worlds instead of world parts. 
4 See Lewis’ (1986, 101) ‘All worlds in one?’ 
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natural number. This probability distribution indeed sums up to one. However, 
there are infinitely many of this sort of probability distributions that sum up to 
one. Therefore, choosing one of these probability distributions is arbitrary. This 
problem will be solved by adding a non-arbitrary selection principle, namely 
cosmological natural selection, and the conclusion that cosmological natural 
selection in a plenitude without isolation results in a probability distribution that 
has no other values than zero and one. 

There is a second problem with the interpretation that the actual world is 
non-plenitudinous with certainty. This interpretation goes against Bostrom’s 
(2013) Self-Indication Assumption, which is the following proposition: 

Self-Indication Assumption: Given the fact that you exist, you should (other 
things equal) favor hypotheses according to which many observers exist over 
hypotheses on which few observers exist (Bostrom 2013, 66).  

Indeed, it is more likely to be born in a world with many observers as 
compared to a world with few observers. However, Bostrom is himself not a fan 
of the Self-Indication Assumption, because it predicts that there is an infinite 
number of observers in the actual world. He reasons that an infinite number of 
observers is not an observed fact, and that a posteriori evidence has priority over 
a priori reasoning. I argue that it is impossible to conclude from a posteriori 
evidence that there is a finite number of observers in the actual world. Since 
gathering a posteriori evidence is limited by our measuring instruments, we have 
to use a priori principles like the Self-Indication Assumption to make conclusions 
about those parts of the actual world that we cannot observe. Given that a 
plenitudinous world maximizes the number of observers, and that the actual 
world is non-plenitudinous according to modal realism, it follows that modal 
realism goes against the Self-Indication Assumption. This problem is solved if the 
claim that the plenitude is not actual is abandoned.  

2.2 Set theory 

In pure, well-founded set theory, sets are iteratively defined starting from the 
empty set toward sets that contain hereditarily only sets as elements (pureness), 
and such that there are no infinitely long ‘has as element’ chains (well-
foundedness). Set theory can formalize actual infinities, also called transfinite 
numbers, which are the extensions of the natural numbers beyond ω, the smallest 
transfinite number.  

A fraction of two numbers is zero if the denominator is at least ω times 
greater than the numerator. This enables the usage of classical, Archimedean 
probabilities, rather than non-zero probabilities for infinitely unlikely events 
(Benci et al. 2018). The distinction between impossible/necessary and possible 
with probability zero/one is not needed for proving predeterminism. It suffices to 
show that either the necessity or the certainty of actuality is the case. 
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All sets are classes, but not every class is a set. For example, the class of all 
sets (also called the universal class) is a proper class, which means that it is itself 
not a member5 of a class, and, therefore, not a set. This avoids the inconsistencies 
known from naive set theory. Proper classes have a size that is equal to Ω, which 
is an Absolute Infinite akin to Cantor’s Absolute Infinite (Jané 1995, 375). Cantor 
defined his Absolute Infinite as an inconsistent cardinal or ordinal that exceeds 
every cardinal or ordinal. However, I use the definition that Ω is a unique absolute 
number that is neither a cardinal nor an ordinal number, and that uniquely 
exceeds every conceivable cardinal and ordinal number. I will therefore call 
cardinals and ordinals exceedable numbers. This distinction between numbers, 
exceedable numbers, and the absolute number compares to the distinction 
between classes, classes that are sets, and proper classes. These distinctions 
between types of numbers are necessary to avoid Cantor’s naive self-referential 
inconsistency. 

Set theories with classes use the Axiom of Limitation of Size (Fraenkel et al. 
1973, 119). This axiom warrants that Ω-large recombinations6 of classes cannot 
exceed the size Ω. Because of this, Ω plays an important role in the proof of 
predeterminism. 

This proof also requires the notions of a total-ordered relation, a well-
founded relation, and a well-ordered relation. A relation R on a set of elements is 
a total-ordered relation iff R is reflexive (xRx), transitive (if xRy and yRz, then xRz), 
antisymmetric (if xRy and yRx, then x = y), and total (xRy or yRx, or both). A 
relation R on a set S of elements is well-founded7 iff there are no infinitely long 
descending chains along R, 8  for chains that have distinct neighbors. This is 
equivalent to saying that there are no subsets of S that have no minimal element 
according to the ordering imposed by R. For a minimal element x there are no 
elements y such that yRx, with x and y distinct. Mind that a set can have multiple 
minimal elements, but only one least (or minimum) element. A relation R on a set 
S of elements is well-ordered iff every subset Si of S has a (unique) minimum 
element x. In symbolic language: ∀ 𝑆ᵢ: ∃! 𝑥, ∀ 𝑦 ∈ 𝑆ᵢ: 𝑥 𝑅 𝑦 . Moreover, R is well-
ordered iff R is total-ordered and well-founded. 

 
5 While sets have elements, classes have members. 
6 Lewis (1986, 103) hoped for a natural break to the plenitude that would 1) avoid unlimited 
recombination, 2) not disqualify worlds that are possible, and 3) not be intolerably ad hoc as a 
boundary. I contend that only Ω can be such a break. 
7  Mind the difference with a strictly well-founded relation, which is well-founded and 
irreflexive. 
8 This has a consequence that can be expressed in terms of limit elements (or limit ordinals, Jech 
1997, 20). Let C be an infinite chain of elements that is ordered by a relation R between elements. 
Then an element z is a limit element of C iff for every element x in C that is ordered earlier than 
z, there exists an element y in C such that xRyRz. Well-foundedness implies that each element is 
only a finite number of has-as-predecessor steps away from any limit element, so in the 
descending direction (toward the earliest element). Ascending chains can have any transfinite 
number of has-as-successor steps. 
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At this point, we can formulate the first assumption for proving 
predeterminism: 

(I) Set-Theoretic Plenitude: There is a one-to-one correspondence between pure, 
well-founded sets and worlds.  

The defense of Set-Theoretic Plenitude is that there is a one-to-one 
correspondence between pure, well-founded sets and exceedable numbers, 
between exceedable numbers and ordinal machines (the transfinite extensions of 
computers) (Koepke and Seyfferth 2009), and between ordinal machines and 
worlds. The first correspondence is well understood, given that exceedable 
numbers are defined via pure, well-founded sets. With respect to the second 
correspondence, for each exceedable α there is an ordinal machine that has a 
memory that consists of α discrete cells and α time instants that are available to 
finish the calculation. The third correspondence is evident from the fact that for 
every world there is an ordinal machine that simulates that world, and that for 
every ordinal machine there is a world (if necessary with a transfinite size) that 
has this ordinal machine as proper part. In this way, worlds are explanatorily 
derived from necessarily existing abstract entities. After all, intelligent beings that 
are simulated by an abstract computer program, cannot conduct any experiment 
to find out whether they are abstract or physical. 

Sets, exceedable numbers, and ordinal machines have a discrete nature. 
Because of the one-to-one correspondence, also worlds are spatiotemporally 
discrete: they consist of an exceedable number of point-instants. This makes them 
compatible with set theory, because it warrants they can have well-ordered 
properties (Schust 2019). 

Set-Theoretic Plenitude lays the foundation for further correspondences 
between physical entities and pure set theory with classes: worlds correspond to 
sets and exceedable numbers (hence non-Ω-large entities), the plenitude to the 
universal class and Ω, spacetimes to classes, and the minimum world (a single 
point-instant) to the empty set.9 The relation is proper part of corresponds to the 
transitive closure of the is element of relation. So a world x is proper part of a world 
y iff x as set is an element of an element, etc. of y as set.  

I introduce some extra terminology that is needed for the proof of 
predeterminism: the size-age of a world, the total size-age of a world x in a world 
y, the total size-age ratio of a world x in a world y (from which the ‘materializes P% 
of’ relation is derived), partonomic compatibility, partonomic completeness, 
initial segment, and a world life. 

The size-age (size multiplied by age or longevity) of a world is determined 
by the number of point-instants of which it consists. The total size-age of a world 
x in a world y, or TotalSizeAge(x, y), is the combined size-age of all the duplicates 
of x that are part of y. The total size-age ratio of a world x in a world y, or 

 
9 In order to use familiar terminology, I will speak of ‘world’ as much as possible. Technically, 
‘spacetime’ is often more appropriate, even when referring to worlds. 
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TotalSizeAgeRatio(x, y), is the total size-age of x in y, divided by the size-age of y. 
We have 0 ⩽ TotalSizeAgeRatio(x, y) ⩽ 1. If TotalSizeAgeRatio(x, y) = P%, then x 
materializes P% of y. With that, we can express the following assumption: 

(II) Worldly Self-Indication: The probability that a world x is actual is 
TotalSizeAgeRatio(x, Plenitude).  

Worldly Self-Indication assumes that a proverbial arrow is randomly shot 
in the size-age of the plenitude, thereby giving each elementary bit of size-age (or 
each minimum world) in the plenitude an equal probability of being hit. A 
necessary and sufficient condition for a world to be actual, is that a part of it is hit. 
Consequently, both the minimum world and the plenitude are actual with 
certainty. The actuality of the worlds in between these two extremes is what 
predeterminism is about. 

Worldly Self-Indication favors the actuality of worlds with a great 
abundance, a great size, and a great age. That is in accordance with the classical 
Self-Indication Assumption. While the Self-Indication Assumption is about the 
probability to be born as a specific observer, Worldly Self-Indication is about the 
probability that a specific world is actual. 

Let a pair of worlds x and y be partonomically compatible iff x is part of y, or 
y is part of x. Otherwise x and y are partonomically incompatible. Then a world life 
(henceforth life) in a world x is any partonomically complete sequence of pairwise 
partonomically compatible initial segments of x. An initial segment of a world x is 
a world that contains everything in x until a given time instant in x. Let S be a 
sequence of partonomically compatible initial segments of a world w and let S be 
ordered by the is proper part of relation. Then S is partonomically complete iff 1) 
S contains the minimum world and w, 2) there exists no world z for any pair of 
adjacent worlds x and y in S, such that x is proper part of z and z is proper part of 
y, and 3) all the limit worlds of S are in S. A life in a world x is therefore a steadily 
growing world in x that starts with a minimum world and ends with x. 

2.3 Cosmological natural selection 

Cosmological natural selection (Smolin 1992) is the theory that Darwinian natural 
selection is universally applicable. It follows from the idea that Darwinian natural 
selection can – in theory – be derived a priori, so via logical thinking alone. Indeed, 
worlds that reproduce10 well will be more abundant than worlds that reproduce 
poorly, which is the essence of natural selection. With that, I propose Cosmological 
Natural Selection (assumption III) and two theorems that are consequences of it: 

(III) Cosmological Natural Selection: Darwinian natural selection is applicable in 
a random limit to the plenitude.  

 
10 Smolin proposed that big bang universes can self-reproduce via black holes. 
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Cosmological natural selection in a plenitude is thereby held to be a process 
that sets up an evolutionary competition between every pair of worlds in the 
plenitude. An assumption or a relation holds in a random limit to the plenitude if it 
holds in all the worlds that are one of a randomly chosen sequence of 
partonomically compatible worlds 𝑧𝛼 that diverges to the plenitude, starting from 
a sufficiently great α-index. A randomly chosen sequence is required, because in a 
plenitude there are necessarily infinitely unlikely sequences of worlds 𝑧𝛼

∗  in which 
an assumption like cosmological natural selection is counteracted. For example, a 
world that reproduces poorly can be given an arbitrarily great abundance in a 
specially chosen sequence of 𝑧𝛼

∗ ’s. 
A random selection of the 𝑧𝛼 ’s starts with the selection of a world 𝑧1, by 

randomly selecting a world duplicate from the class of all (equiprobable) world 
duplicates. Then a world 𝑧2 is selected via a random selection from the class of all 
world duplicates that have 𝑧1 as proper part, followed by a similar selection of a 
𝑧3 that has 𝑧2 as proper part, etc. (selecting limit worlds when appropriate), until 
the plenitude is selected. If predeterminism is correct, however, the assumption 
of randomness must lead to its own contradiction. Indeed, the selection method 
above selects the partonomically complete, certainly actual life 𝐿𝐴 with certainty, 
because 𝐿𝐴’s initial segments all materialize 100% of the plenitude.11 Therefore, it 
suffices to assume that Darwinian natural selection is applicable in all sufficiently 
great 𝑧𝛼 that materialize 100% of the plenitude. 

This brings us to the consequences of Cosmological Natural Selection. Let 
the relation evolutionarily precedes be defined such that x evolutionarily precedes 
y iff, in a random limit to the plenitude, the reproduction of a (duplicate of) y goes 
together with the reproduction of a (duplicate of) x, rather than the other way 
around. Reproduction can happen via any process and is not limited to self-
reproduction. Even though evolutionary precedence is about an abundance 
relation between x and y in a random limit to the plenitude, it can, in many cases, 
be interpreted in biological terms. For example, bacteria evolutionarily precede 
eukaryotes because eukaryotes turned free-living bacteria into organelles. 
Therefore, eukaryotes can (technically12) not reproduce themselves without also 
reproducing bacteria, while many bacteria can reproduce without necessitating 
the reproduction of a eukaryote. Another example is that lions require the 
reproduction of prey for their own reproduction, while prey can reproduce 
independently.  

The first consequence of Cosmological Natural Selection is Total-
Orderedness Theorem: 

 
11 Blondé (2015, 150) constructs the certainly actual part of the plenitude as a ‘life’ 𝐿𝐴

∗  with Ω-
large initial segments 𝑖𝛼

∗ . This 𝐿𝐴
∗  contains all the world duplicates generated in the plenitude by 

the initial segments 𝑖𝛼  of 𝐿𝐴. Recursively, we have 𝑖1
∗ = 𝑖1 and 𝑖𝛼+1

∗  = (Ω × 𝑖𝛼
∗ ) + 𝑖𝛼+1, with 𝑖1 the 

minimum world. This construction makes it clear how all the 𝑖𝛼 ’s can materialize 100% of the 
plenitude simultaneously. 
12 In fact, the organelles are no longer called bacteria. 
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Total-Orderedness Theorem: The relation evolutionarily precedes or is equal to is 
total-ordered on the plenitude.  

Proof. A relation is total-ordered iff it is 1) reflexive, 2) transitive, 3) 
antisymmetric, and 4) total. 1) The relation evolutionarily precedes or is equal to is 
explicitly made reflexive via the or is equal to part. 2) Precedence, having a greater 
reproductive ability in a random limit to the plenitude, and equality are all 
transitive relations. Therefore evolutionarily precedes or is equal to is also 
transitive. 3) The rather than the other way around in the definition of 
evolutionary precedence explicitly makes this relation antisymmetric. 4) Totality 
follows from the idea that even the smallest difference between two worlds x and 
y results in a difference in reproductive ability of x and y within a sufficiently large 
world 𝑧𝛼. This difference in reproductive ability is hard to deny for big differences. 
Duplicates of four-legged dogs clearly reproduce or are reproduced more 
abundantly than duplicates of one-legged wolves. However, what holds for big 
differences – ultimately, in a random limit to the plenitude – holds for every 
difference, no matter how small it is. Therefore, a difference in internal make-up 
results in a difference in reproductive ability in a random limit to the plenitude, 
and this in turn in an evolutionary precedence for any pair of distinct worlds x and 
y. □  

The second consequence of Cosmological Natural Selection is Well-Found-
edness Theorem. Its proof requires the notions of regular and irregular 
evolutionary chains. In a regular evolutionary chain, the earlier worlds 
evolutionarily precede the later worlds13 and descending backward toward the 
earliest element always results in a finite number of steps. Irregular evolutionary 
chains, on the other hand, are infinitely long chains in which the earlier worlds are 
evolutionarily preceded by the later worlds, instead of the other way around. 

Also this notion of evolutionary chains is known from biology and physics: 
particles, atoms, molecules, biomolecules, cells, eukaryotes, plants, and animals, 
form an example of such a chain. According to Set-Theoretic Plenitude and 
Cosmological Natural Selection, evolutionary chains can have Ω levels: there are 
4D worlds that require 3D animals as a prior, 5D worlds that require 4D worlds as 
a prior, etc., all the way to the ΩD plenitude.14 

I will prove irregular evolutionary chains do not exist via the following 
theorem: 

 
13 The later worlds are then evolutionarily dependent on (or require as a prior) the earlier 
worlds in the chains, while the earlier worlds are evolutionarily conserved (unalterable) 
(Ferrière et al. 2004; Blondé 2016). 
14 Because the observable world is unalterable due to evolutionary conservation, we can only 
observe the earlier elements of the chain: from particles to 3D animals (Blondé 2016). 
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Well-Foundedness Theorem: The relation evolutionarily precedes or is equal to15 
is well-founded on the plenitude.  

Proof. Given Set-Theoretic Plenitude, there exists a minimum world (a 
point-instant) in the plenitude that has the greatest abundance of all worlds. 
Consequently, 1) the minimum world evolutionarily precedes every other world. 
2) In a random limit to the plenitude, every world, no matter how large, chaotic, 
or malevolent, eventually becomes useful in some reproduction cycle (if needed 
as a carrier of genetic information or an ornament of some advanced life form). 
From 1) and 2) it follows that 3) in a random limit to the plenitude, every world x 
eventually becomes an element of one or more regular evolutionary chains that 
start from the minimum world. (Such regular chains can consist of the minimum 
world, evolutionarily earlier worlds in the reproduction cycle of x, and x itself.) 

According to the definitions, the relation evolutionarily precedes or is equal 
to is well-founded iff no irregular evolutionary chain exists. Therefore, as a proof 
from contradiction, I propose the hypothesis that an irregular evolutionary chain 
exists. However, the earlier worlds in such a chain have arbitrarily many different 
additional regular evolutionary chains along which they can come into existence 
and reproduce abundantly, as compared to an arbitrarily late world in the 
irregular chain.16  

 

Figure 1: Two regular evolutionary chains (Rx and Ry) and one irregular chain (Ia). Rx = (m, …, c, 
b, x), Ry = (m, e, y, c, b, x), and Ia = (a, x, b, c, y, d, …). Because the descending chain (b, c, …, m) in 
Rx must be finite, there are infinitely many additional regular chains like Ry through which the 
early world x can come into existence. E.g. Rd = (m, d, y, c, b, x). 

Indeed, because of 3), all the later worlds y in the infinite irregular chain 
create additional regular evolutionary chains for the earlier worlds x (See Figure 

 
15 Well-founded relations may or may not be reflexive. Therefore, evolutionarily precedes or is 
equal to is well-founded iff evolutionarily precedes is well-founded. 
16 For the case that the infinite irregular chain consists of a finite number of worlds that are 
short circuited on themselves, it suffices to note that the relation evolutionarily precedes is 
transitive and irreflexive: worlds cannot evolutionarily precede themselves. 
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1). These regular chains have two parts: part 1 from the minimum world to y 
outside of the irregular chain, and part 2 from y to x along the inverse direction of 
the irregular chain. Some of these regular chains Ry can already exist for an earlier 
world x as a chain Rx. This happens when a section of part 1 of Rx that touches x 
coincides with the section of Ry that comes after x. Nevertheless, a different 
regular chain Ry is certain to follow for some later world y, because a regular chain 
Rx can map only a finite number of its x-touching-worlds-in-part-1-of-Rx to the 
worlds that come after x in the irregular chain. 17  Otherwise Rx would not be 
regular but irregular. This different Ry, with y coming after x plus its finite 
mapping to part 2 of Ry, is an additional regular evolutionary chain. 

4) Any additional evolutionary chains contribute to the abundances of the 
early worlds, but not to those of the late worlds. Moreover, 5) if the arbitrarily late 
worlds are formed via arbitrarily long regular evolutionary chains, then these 
regular chains contribute less to the abundances of the late worlds as compared 
to the shorter regular chains for the early worlds, because in regular chains the 
early worlds have, according to definition, the greatest abundances. As a result of 
4) and 5), the later worlds in an irregular chain cannot have the greater 
abundances in a random limit to the plenitude and, therefore, cannot 
evolutionarily precede the earlier worlds. This contradicts the hypothesis. 
Therefore, the relations evolutionarily precedes and evolutionarily precedes or is 
equal to, are well-founded on the plenitude. □  

With the assumptions and their consequences in this section we can start 
with the proof of predeterminism. This happens in the next section. 

3. Proving Predeterminism 

In the previous section, two theorems about the evolutionarily precedes or is equal 
to relation were proven: Total-Orderedness Theorem, and Well-Foundedness 
Theorem. In this section, four more theorems about two more relations are 
proven: First Equality Theorem, Second Equality Theorem, Well-Ordering 
Theorem, and Certain Life Theorem, about the relations Ω-outnumbers or is equal 
to and part-or-outweighs or is equal to. Certain Life Theorem claims that a unique, 
partonomically complete life 𝐿𝐴 is certainly actual, which proves predeterminism. 

Let the relation Ω-outnumbers be defined such that x Ω-outnumbers y iff the 
abundance ratio of x and y in z diverges exclusively18 to Ω for z going in a random 
limit to the plenitude. With that, we can express First Equality Theorem: 

First Equality Theorem: The relations evolutionarily precedes or is equal to and 
Ω-outnumbers or is equal to are equal: a world x evolutionarily precedes or is 
equal to a world y iff x Ω-outnumbers or is equal to y.  

 
17 This mapping should exclude the minimum world, which can never be in the middle of an 
evolutionary chain. 
18 This excludes the possibility that the abundance ratio keeps both exceeding every ratio α and 
dropping below every ratio 1/α, as z goes in the limit to the plenitude. 
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Proof. Let us postpone the issue of reflexivity and assume that x and y are 
distinct. Then the proof consists of the following two steps: Step 1) if x Ω-
outnumbers y then x evolutionarily precedes y, and Step 2) if x evolutionarily 
precedes y then x Ω-outnumbers y. 

Step 1) If x Ω-outnumbers y, then (trivially) the reproduction of a (duplicate 
of) y more often goes together with the reproduction of a (duplicate of) x in a 
random limit to the plenitude, than the other way around. According to the 
definition of the relation evolutionarily precedes, x then evolutionarily precedes y. 

Step 2) If x evolutionarily precedes y, then, 2a) if at all either x Ω-
outnumbers y, or y Ω-outnumbers x, then x Ω-outnumbers y. Indeed, in worlds 𝑧𝛼 
that go in a random limit to the plenitude, a reproduction of y goes together with 
a reproduction of x, rather than the other way around. Therefore the abundance 
of x in 𝑧𝛼 must rather be greater than the abundance of y in 𝑧𝛼 in a random limit 
to the plenitude, such that y can never Ω-outnumber x. 2b) For worlds 𝑧𝛼 that go 
in a random limit to the plenitude, the number of (non-duplicate19) worlds in 𝑧𝛼 
diverges to Ω. If a pair of worlds x and y would in all circumstances reproduce 
together, such that χ new duplicates of x come with γ new duplicates of y, then the 
abundance ratio would not diverge, but remain χ/γ. However, this is not the case 
for most x and y. Therefore, also the abundance ratios between most pairs of 
worlds in 𝑧𝛼 diverge to either Ω or 1/Ω. 

As a result of 2a) and 2b), for most pairs of x and y in which x evolutionarily 
precedes y, x Ω-outnumbers y. Now I argue that, in a random limit to the plenitude, 
x Ω-outnumbers y for every pair of worlds x and y in which x evolutionarily 
precedes y. 

Let us consider a proof by contradiction by assuming that there exists a 
special pair of worlds 𝑥∗ and 𝑦∗ , where 𝑥∗ evolutionarily precedes 𝑦∗ , and such 
that their abundance ratios stay below or keep dropping below a certain ratio β > 
1/Ω, in 𝑧𝛼’s that go in a random limit to the plenitude. The larger 𝑧𝛼 becomes, the 
more coincidental and special this relation between 𝑥∗ and 𝑦∗ becomes. However, 
using the assumptions of Set-Theoretic Plenitude, Cosmological Natural Selection, 
and the randomness of the sequence of worlds 𝑧𝛼, there is nothing that indicates 
a special relation between any pair of worlds. Even though such a special relation 
can exist in some particular world 𝑧𝛼, there are always Ω randomly chosen worlds 
left that will come in an evolutionary competition with 𝑧𝛼 and that jointly contain 
Ω 𝑥∗  and 𝑦∗  duplicates. On the other hand, there can only be an exceedable 
number of 𝑥∗ and 𝑦∗ duplicates in the union of all the worlds that are not larger 
than 𝑧𝛼. Therefore, the probability that 𝑥∗ and 𝑦∗ do not diverge is 1/Ω. Because 
there are only an exceedable number of possible pairs of 𝑥∗  and 𝑦∗  below any 
exceedable threshold, it follows that such an 𝑥∗ and 𝑦∗ do not exist and that x Ω-
outnumbers y. 

 
19 Obviously, the number of world duplicates diverges to Ω. However, a world represents a type 
of world duplicate, and also the number of such types diverges to Ω. 
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The combination of Step 1 and Step 2 proves the equality of the relations 
evolutionarily precedes or is equal to and Ω-outnumbers or is equal to for distinct x 
and y. Because both these relations are reflexive, this proves their equality. □ 

Next, I introduce the relations Ω-outweighs and part-or-outweighs. Let us 
call the division of the total size-age of x in z by the total size-age of y in z, the 
outweigh-ratio of x and y in z:  

outweigh-ratio of x and y in z = 
𝑇𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝐴𝑔𝑒(𝑥,𝑧)

𝑇𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝐴𝑔𝑒(𝑦,𝑧)
 

The outweigh-ratio of x and y in z indicates which fraction of z is 
materialized by x as compared to y. If z has a transfinite size-age, the outweigh-
ratios can also become transfinite. Let us say that x Ω-outweighs y iff the outweigh-
ratio of x and y in z diverges exclusively to Ω for z going randomly in the limit to 
the plenitude. Then the relation part-or-outweighs reads as: is proper part of or Ω-
outweighs. The following formula recapitulates this: 

𝑥 𝑃𝑎𝑟𝑡𝑂𝑟𝑂𝑢𝑡𝑤𝑒𝑖𝑔ℎ𝑠 𝑦 

↔ 

(𝑥 𝑃𝑟𝑜𝑝𝑒𝑟𝑃𝑎𝑟𝑡𝑂𝑓 𝑦)  ∨ ( lim
𝑧→PL

𝑇𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝐴𝑔𝑒(𝑥, 𝑧)

𝑇𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝐴𝑔𝑒(𝑦, 𝑧)
= Ω) 

Having introduced the part-or-outweighs relation, we can express Second 
Equality Theorem. Its proof is more familiar, in the sense that it does not depend 
on Cosmological Natural Selection. 

Second Equality Theorem: The relations evolutionarily precedes or is equal to and 
part-or-outweighs or is equal to are equal: a world x evolutionarily precedes or is 
equal to a world y iff x part-or-outweighs or is equal to y.20  

Proof. Let us again postpone the issue of reflexivity and assume that x and y 
are distinct. Then the proof consists of the following two steps: Step 1) if x part-
or-outweighs y then x evolutionarily precedes y, and Step 2) if x evolutionarily 
precedes y then x part-or-outweighs y. 

Step 1) If x part-or-outweighs y then either 1a) x is proper part of y or 1b) 
x Ω-outweighs y. 1a) If x is proper part of y then x always evolutionarily precedes 
y because a reproduction of y necessitates a reproduction of x, while not the other 
way around. 1b) If x Ω-outweighs y, then x must also Ω-outnumber y, because the 
size-ages of x and y have exceedable values. (If x would only α-outnumber y, with 
α some exceedable value, then x would also only β-outweigh y, with β some other 
exceedable value.) Because of First Equality Theorem, x then evolutionarily 
precedes y. In either case, 1a) or 1b), x evolutionarily precedes y. 

 
20 Consequently, the three relations evolutionarily precedes or is equal to, Ω-outnumbers or is 
equal to, and part-or-outweighs or is equal to are all equal. 
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Step 2) If x evolutionarily precedes y then, according to First Equality 
Theorem, x Ω-outnumbers y. Now, if 2a) x is not proper part of y,21 then we have 
three facts: Fact 1) x materializes 0% of y. Fact 2) y materializes 0% of x. 
(Otherwise y would be a proper part of x, which would imply that y evolutionarily 
precedes x. This is impossible, because evolutionary precedence is antisymmetric.) 
Fact 3) the size-ages of x and y have exceedable values. 

With these three facts, we can calculate the outweigh-ratio of x and y in 𝑧𝛼, 
with 𝑧𝛼 going in a random limit to the plenitude. Indeed, because of Fact 1) and 2) 
the x and y duplicates occupy distinct regions of the plenitude. This calculated 
ratio is an exceedable value (the division of the size-age of x by the size-age of y, 
and using Fact 3)) multiplied by the abundance of x in the plenitude, divided by 
the abundance of y in the plenitude. Because x Ω-outnumbers y, the division of the 
last two factors is Ω, such that x also Ω-outweighs y. If x Ω-outweighs y, then x part-
or-outweighs y, according to the definition of part-or-outweighs. If 2b) x is proper 
part of y, then also x part-or-outweighs y, according to this definition. 

The combination of 2a) and 2b) proves Step 2. The combination of Step 1 
and Step 2 proves the equality of the relations evolutionarily precedes or is equal 
to and part-or-outweighs or is equal to for distinct x and y. Because both these 
relations are reflexive, this proves their equality. □ 

Now we can prove the following theorem: 

Well-Ordering Theorem: The relation part-or-outweighs or is equal to is well-
ordered on the plenitude.  

Proof. According to Total-Orderedness Theorem and Well-Foundedness 
Theorem, the relation evolutionarily precedes or is equal to is total-ordered and 
well-founded on the plenitude. Such a relation is well-ordered on the plenitude. 
Because of Second Equality Theorem, also the relation part-or-outweighs or is 
equal to is well-ordered on the plenitude. □ 

Let us now call a world that part-or-outweighs all the other worlds in a set 
of worlds S, a part-or-outweigh champion of S. From Well-Ordering Theorem it 
follows that in every set of worlds, there is a unique part-or-outweigh champion. 
With that, Certain Life Theorem can be proven: 

Certain Life Theorem: A unique life 𝐿𝐴 in the plenitude can be constructed, 
such that its partonomically complete sequence of initial segments are certainly 
actual.  

 
21 Proper parts do not Ω-outweigh all their wholes. For example, even though the minimum 
world Ω-outnumbers the plenitude, it does not Ω-outweigh it. 
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Figure 2: The two phases of two lives that are compared, via their translations to pure sets. 
According to predeterminism, either the worlds in the top or the bottom life in the parallel phase 
(either i3 or p3 here) are absolutely infinitely more likely to be actual than those in the other life. 

Proof. We begin with the minimum world as the first world 𝑖1  that is 
selected as an initial segment of the constructed life 𝐿𝐴. For finding the next initial 
segment 𝑖𝛼+1, we construct the class 𝑊𝛼 of all the worlds that have 𝑖𝛼 as proper 
part. Because of Well-Ordering Theorem, a unique part-or-outweigh champion in 
𝑊𝛼 can always be found. This part-or-outweigh champion is selected as the new 
initial segment 𝑖𝛼+1 of 𝐿𝐴. A limit world is selected when all the proper parts of the 
limit world are a proper part of an initial segment that has already been selected. 
This iteration continues until the plenitude is selected. With that, we have 
constructed 𝐿𝐴: a sequence of initial segments 𝑖𝛼  that starts with the minimum 
world and ends with the plenitude. 

I will now prove that 𝐿𝐴 is the certainly actual life by proving, first, that the 
constructed sequence is partonomically complete and then, second, that the initial 
segments in the sequence are certainly actual. First, for the claim about 
partonomic completeness, I propose a proof by contradiction by assuming that 
there is a 𝑗 such that 𝑖𝛼 is proper part of 𝑗 and 𝑗 is proper part of 𝑖𝛼+1, for some α. 
If this 𝑗 exists, the constructed sequence is not partonomically complete. However, 
if this 𝑗  exists, it would be in the class 𝑊𝛼 , because 𝑗  has 𝑖𝛼  as proper part. 
Moreover, this 𝑗  would part-or-outweigh 𝑖𝛼+1 , because 𝑗  is proper part of 𝑖𝛼+1 . 
This is not possible by construction, given that 𝑖𝛼+1  is the part-or-outweigh 
champion in 𝑊𝛼. Such a 𝑗 can, therefore, not exist. Because the minimum world, all 
the limit worlds, and the plenitude are also included in the sequence, this shows 
that the constructed sequence is partonomically complete. 

Second, I prove that the initial segments of 𝐿𝐴 are certainly actual. For each 
initial segment 𝑖𝛼 of 𝐿𝐴, we compare 𝑖𝛼+1 with the parallel initial segments 𝑝𝛼+1 of 
lives that split away from 𝐿𝐴 at index α, such that the 𝑝𝛼+1’s do have 𝑖𝛼 as proper 
part, but not 𝑖𝛼+1 (see also the parallel phase in Figure 2). These 𝑝𝛼+1’s together 
with 𝑖𝛼+1 are precisely the worlds in a reduced 𝑊𝛼

∗: all the worlds in 𝑊𝛼 that have 
𝑖𝛼+1  as proper part are removed from 𝑊𝛼

∗ . Within 𝑊𝛼
∗ , the part-or-outweigh 

champion 𝑖𝛼+1 not only part-or-outweighs all the 𝑝𝛼+1’s, it also Ω-outweighs all 
the 𝑝𝛼+1’s. Indeed, according to the definition of the part-or-outweighs relation, a 
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world x that part-or-outweighs a world y, also Ω-outweighs y if x is not a proper 
part of y. 

Since 𝑖𝛼+1 Ω-outweighs all the 𝑝𝛼+1’s, it also Ω-outweighs all the duplicates 
of 𝑖𝛼 that are not a proper part of an 𝑖𝛼+1-duplicate, but a proper part of one of the 
duplicates of one of the 𝑝𝛼+1’s. This must be so because all these 𝑖𝛼-duplicates-in-
𝑝𝛼+1-duplicates together do not materialize more of the plenitude than all the 
𝑝𝛼+1-duplicates together,22 which is 0%. This means that if 𝑖𝛼 materializes 100% 
of the plenitude, that also 𝑖𝛼+1  does so, because 100% of the 𝑖𝛼  duplicates are 
found in an 𝑖𝛼+1-duplicate.  

Now, given that 𝑖1 (the minimum world) is the fundamental unit of size-age, 
it materializes 100% of the plenitude. This proves, via transfinite induction (Jech 
1997, 21), that all the 𝑖𝛼 ’s materialize 100% of the plenitude, or 
TotalSizeAgeRatio( 𝑖𝛼 , Plenitude) = 1, for all α. This makes all the 𝑖𝛼 ’s of 𝐿𝐴 
(including the plenitude) certainly actual. We have thus constructed a unique life 
in the plenitude whose partonomically complete sequence of initial segments are 
certainly actual and ordered by the is proper part of relation. This proves 
predeterminism. □ 

4. Discussion 

4.1 Randomizing probabilities 

Given predeterminism, there are no probabilities different from zero and one that 
a world is actual. This is a virtue of predeterminism, because it avoids the need to 
randomize the probability distribution over all the possible worlds in the 
plenitude. A randomizer – one that does not always return the same outcome – 
cannot be implemented in a computer program without making use of an input 
(or a seed) derived from an external reality (Koza 1991). However, with respect 
to the whole plenitude, there is no external reality. A randomizer that uses internal 
facts, either hardcoded in the randomizer or coming from one or more of the 
possible worlds, will always return the same outcome, which results in 
predeterminism again. 

4.2 Solipsistic predeterminism 

As I start from modal realism in this paper, and because modal realism is about 
worlds instead of conscious experiences or brain structures, I have restricted the 
definition of predeterminism to be about the actuality of worlds. Nevertheless, 
Blondé (2015) proposes a more controversial variety of predeterminism that 
could be called solipsistic predeterminism, which adds the claim that the certainly 

 
22  Because part-or-outweighs is well-founded on the plenitude, it can be generalized from 
worlds (sets) to spacetimes (classes) (Jech 1997, 67). Therefore, the spacetime-union of all the 
𝑝𝛼+1-duplicates is part-or-outweighed and Ω-outweighed by 𝑖𝛼+1, such that it materializes no 
more than 0% of the plenitude. 



Ward Blondé 

156 

actual life is the evolving consciousness of a unique observer. This is a form of 
solipsism in which other observers do exist, however, the brain structures that 
produce their conscious experiences have total size-ages that are infinitely 
smaller than those of the solipsistic experiences. 

As a cosmological model, Blondé (2016, 32) proposes a Russian nesting doll 
of dimensionally smaller universes in dimensionally larger universes. Complex life 
in higher dimensions becomes evolutionarily dependent on less complex life in 
lower dimensions. In order to reproduce themselves, more complex agents 
efficiently reproduce, simulate, back up, and restore less complex agents, while 
not interfering out of respect for their evolutionarily conserved reproduction plan. 
In this way, the density of intelligent consciousness-generating brain or CPU 
matter always increases in higher dimensions. In the limit, such brain or CPU 
matter materializes 100% of the plenitude and simulates us (with unequal 
resources) as we progress through increasingly many spatial dimensions. 

Solipsism may not appear an attractive worldview. However, as the density 
of brain matter increases in higher-dimensional layers of reality, the probability 
increases that brains – and the consciousnesses they generate – merge (for 
example, by connecting neurons). In this way, eventually everybody will become 
the certainly actual consciousness, by merging with it in a plenitude-wide brain.  

5. Conclusions 

According to the account of predeterminism in this paper, actuality is the unique 
outcome of an absolutely infinitely complex computation that is executed by 
cosmological natural selection. This computation takes every possible fact into 
account. Every actual fact has an explanation and has been predetermined to be 
the case with 100% certainty. Whereas for determinism, everything is determined 
once a contingent initial state is given, predeterminism starts from the existence 
of a plenitude. 

According to the assumption of Worldly Self-Indication, worlds with a 
greater abundance, a greater size, and a greater age have a greater probability to 
be actual, because they materialize a greater fraction of the plenitude. The number 
of worlds (or types of world duplicates) becomes absolutely infinitely great in the 
limit to the plenitude. Consequently, also the differences between the total size-
ages of worlds in the plenitude become absolutely infinitely great.  

If a world x has a total size-age that is infinitely smaller than that of a world 
y, then the probability of x to be actual becomes zero. This reduces the probability 
to be actual to zero for most worlds in the plenitude. However, for two cases it can 
easily be explained that their total size-ages are maximal, such that their 
probabilities to be actual are also maximal: for the minimum world (a point during 
one instant of time) and for the plenitude itself. Their total size-ages are equal to 
that of the plenitude, and their probabilities to be actual are one. They materialize 
100% of the plenitude. 
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According to the proof of predeterminism, there is a partonomically 
complete sequence of worlds, or a world life, in between these two cases, such that 
their total size-ages are also maximal, namely equal to that of the plenitude. The 
probabilities to be actual of all the worlds in this world life are all equal to one. All 
other world lives that live in parallel with the certainly actual world life, 
materialize only an infinitesimally small fraction of reality, and are therefore non-
actual with certainty. However, they can become certainly actual by merging with 
the certainly actual life. 
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