Algebra of Theoretical Term Reductions in the Sciences (pages 51-67)

Dale Jacquette

ABSTRACT: An elementary algebra identifies conceptual and corresponding applicational limitations in John Kemeny and Paul Oppenheim’s (K-O) 1956 model of theoretical reduction in the sciences. The K-O model was once widely accepted, at least in spirit, but seems afterward to have been discredited, or in any event superceeded. Today, the K-O reduction model is seldom mentioned, except to clarify when a reduction in the Kemeny-Oppenheim sense is not intended. The present essay takes a fresh look at the basic mathematics of K-O comparative vocabulary theoretical term reductions, from historical and philosophical standpoints, as a contribution to the history of the philosophy of science. The K-O theoretical reduction model qualifies a theory replacement as a successful reduction when preconditions of explanatory adequacy and comparable systematicization are met, and there occur fewer numbers of theoretical terms identified as replicable syntax types in the most economical statement of a theory’s putative propositional truths, as compared with the theoretical term count for the theory it replaces. The challenge to the historical model developed here, to help explain its scope and limitations, involves the potential for equivocal theoretical meanings of multiple theoretical term tokens of the same syntactical type.

application-pdf Download PDF

About Dale Jacquette

Check Also

Introductory Note (pages 5-6)

Teodor Dima Download PDF